Novel Anti-Inflammatory Constituents of Artocarpus rigida

by Yi-Huang Lu and Chun-Nan Lin*

School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Republic of China (phone: +886-7-3121101-9 ext 2163; fax: +886-7-5562365; e-mail: lincna@cc.kmu.edu.tw)

and

Horng-Huey Ko

Department of Cosmetic Management and Application, Chung Hwa College of Medical Technology, Tainan Hsien, Taiwan 717, Republic of China

and

Sheng-Zehn Yang

Department of Forest Resource, Management and Technology, National Pintung University of Science and Technology, Ping-Tung Hsien, Taiwan 912, Republic of China

and

Lo-Ti Tsao and Jih-Pyang Wang

Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 407, Republic of China

A novel phenolic compound containing an oxepine ring, artocarpol I (1), and a new biphenylpropanoid, artocarpol J (2), were isolated from the root bark of *Artocarpus rigida*. The structures, including relative configurations, were elucidated by spectroscopic data. Compound 1 and artocarpol J peracetate (3) strongly inhibited in a concentration-dependent manner the formyl-Met-Leu-Phe (fMLP)/cytochalasin B (CB)-stimulated superoxide anion formation in neutrophils with IC_{50} values of 17.1 ± 0.40 and $20.5 \pm 2.60 \,\mu$ M, respectively. Biogenetically, all the novel phenolic compounds isolated from this plant seem to be derived from stilbene.

1. Introduction. – Previously, we reported the isolation of a series of phenolic compounds with a new skeleton from the root barks of Formosan *Artocarpus rigida* (Moraceae) [1-4]. These compounds were different from those of the same plant grown in Indonesia which were reported by *Hano et al.* [5][6]. Further examination of the CHCl₃ extract of the root barks resulted in the isolation of two new compounds, artocarpol I (1) and J (2). Artocarpol A strongly inhibited superoxide anion formation in phorbal 12-myristate 13-acetate (PMA) stimulated rat neutrophils and significantly inhibited tumor necrosis factor- α (TNF- α) formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells [1]. Artocarpol C strongly inhibited the release of β -glucuronidase and histamine from mast cell degranulation caused by compound 48/80 and also showed strongly inhibitory effect on the formyl-Met-Leu-Phe(fMLP)/ cytochalasin B(CB)-stimulated superoxide anion formation in neutrophils [4]. In the present paper, the structure elucidation of 1 and 2 from this plant, and the anti-inflammatory activities of 1 and artocarpol J peracetate (3) are reported.

Figure. Structures of 1–3, and selected NOESY correlations and relative configurations for 1 and 3

2. Results and Discussion. – The molecular formula of artocarpol I (1) ($[a]_D^{26} = 2$ (c = 0.1, CHCl₃)) was established as C₂₉H₃₄O₅ by HR-FAB-MS (m/z 463.2485, $[M + 1]^+$].

The IR absorption of **1** implied the presence of OH (3417 cm^{-1}) and aromatic ring (1625 cm^{-1}) moieties. The UV spectrum was similar to that of artocarpol G [4], which indicated an unconjugated aromatic system [7].

¹H- and ¹³C-NMR data (*Table 1*) revealed signals due to a trisubstituted and a tetrasubstituted benzene ring (B and A), two 3,3-dimethylallyl groups, two sp³-CH₂ methylenes, a sp³-oxymethine, a tertiary Me group, and an oxygenated C-atom. The proposed structure for **1** was deduced from extensive analysis of 1D- and 2D-NMR data, including those from COSY, HMQC, HMBC, and NOESY experiments in CDCl₃ (*Table 1*).

The connectivities of CH₂(11) to CH(12), CH₂(16) to H–C(17), and CH₂(21) to H–C(22) were revealed by the COSY data. In addition, the HMBC correlations between Me(14)/C(13), Me(15)/C(14) and C(12), CH₂(11)/C(2), C(3), C(12), and C(13) established the prenyl group at C(3), indicated with bold lines in **1** (see *Fig.*). The HMBC correlations between Me(24)/C(25), Me(25)/C(22) and C(23), CH₂(21)/C(23) and C(20), and CH₂(20)/C(21) confirmed the other prenyl group at C(20). The HMBC correlations between CH₂(16)/C(4a) and C(9), Me(19)/C(18) and C(17), the NOESY correlations between H_β-C(16)/H–C(17) and H–C(17)/Me(19), and the C(9) and C(18) indicated an oxygenated quarternary C-atom, established the connectivities between C(10) and C(16), C(17) and C(18), and C(18) and C(20), and supported the connection of the C- and D-ring by C(9)–O–C(18) and C(10)–C(16) bonds.

The NOESY experiment with **1** displayed cross-peaks as shown in the *Figure*. The relative configurations at C(17) and C(18) were based on NOESY correlations of H_{β} -C(16)/H-C(17) and H-C(17)/Me(19), while H-C(17) and Me(19), and OH-C(17) adopted the β -and α -configuration, respectively. Further experiments are required to elucidate the absolute configuration of **1**. From the above results,

	$\delta(\mathrm{H})$	$\delta(C)$	HMBC (¹ H)
H-C(1)	6.57 (s)	106.4	5.28 (HO-C(2))
C(1a)		151.9	6.57 (H-C(1)), 6.48 (H-C(4))
HO-C(2)	5.28(s)	154.5	$6.57 (H-C(1)), 3.23 (C-H_2(11))$
C(3)		120.7	$6.48 (H-C(4)), 3.23 (C-H_2(11))$
H-C(4)	6.48 (s)	106.0	
C(4a)		132.0	$2.52 (H_a - C(16))$
H-C(5)	7.42 $(d, J = 8.8)$	121.1	
H-C(6)	6.80 (dd, J = 8.8, 2.0)	111.9	6.98 (H-C(8))
C(7)		153.4	7.42 (H-C(5))
H-C(8)	6.98 (d, J = 2.0)	98.3	6.80 (H-C(6))
C(8a)		155.6	7.42 (H-C(5)), 6.98 (H-C(8))
C(9)		152.6	2.52 $(H_a - C(16))$
C(9a)		122.1	6.80 (H-C(6))
C(10)		118.0	
$C-H_2(11)$	3.23 (d, J = 6.8)	27.2	
H - C(12)	5.20(t, J = 6.8)	122.4	$3.23 (C-H_2(11)), 1.67 (Me(15))$
C(13)		131.6	$3.23 (C-H_2(11)), 1.59 (Me(14))$
Me(14)	1.59 (s)	17.7	1.67 (Me(15))
Me(15)	1.67(s)	16.1	
$H_a - C(16)$	2.52 (dd, J = 17.2, 6.0)	30.0	
$H_{\beta} - C(16)$	$2.81 \ (dd, J = 17.2, 4.8)$		
$H_{\beta}-C(17)$	3.70 (dd, J = 6.0, 4.8)	69.8	1.32 (Me(19))
C(18)		76.5	1.32 (Me(19))
Me(19)	1.32 (s)	24.7	
$C-H_2(20)$	2.03 (t, J = 6.8)	39.6	$2.08 (C-H_2(21))$
$C-H_2(21)$	2.08(t, J = 6.8)	26.5	$2.03 (C-H_2(20))$
H - C(22)	5.03(t, J = 6.8)	123.7	1.64 (Me(25))
C(23)		138.2	$2.08 (C-H_2(21)), 1.64 (Me(25))$
Me(24)	1.35 (s)	22.0	
Me(25)	1.64 (s)	25.7	1.35 (Me(24))
^a) Signals obtain	ed by ¹ H- and ¹³ C-NMR, DEPT, an	nd HMBC experim	nents.

Table 1. *1D- and 2D-NMR Data* (δ in ppm, *J* in Hz) of **1** in *CDCl*₃. Arbitrary numbering (see Fig. 1)^a).

artocarpol I was characterized as 3,4-dihydro-2-methyl-6-(3-methylbut-2-enyl)-2-(4-methylpent-3-enyl)-2H-dibenzo[b,f]pyrano[2,3-d]oxepine-3a,7,11-triol (1).

We acylated compound **2**, since we were unable to isolate it in pure form. The peracetate **3** of **2** ($[a]_D^{27} = +46$ (c = 1.0, CHCl₃)) displayed $[M+1]^+$ ion peak at m/z 443.1342 in the HR-FAB-MS, corresponding to the molecular formula C₂₃H₂₂O₉. The IR absorption of **3** showed the presence of AcO groups (1766 cm⁻¹) and an aromatic moiety (1622 cm⁻¹). The UV spectrum of **2** showed absorption maxima at 275 (3.73) and 210 (4.53) nm, indicating the presence of an unconjugated aromatic system [7].

¹H- and ¹³C-NMR data (*Table 2*) revealed signals due to a tetrasubstituted benzene ring, a disubstituted benzene ring, four Ac groups, a sp³-CH₂, and two sp³-oxymethines. The proposed structure for **3** was deduced from extensive analysis of 1D- and 2D-NMR data, including those from COSY, HMQC, HMBC, and NOESY experiments in CDCl₃ (*Table 2*). The connectivities of H–C(3) to H–C(2) and H–C(2) to CH₂(1) were confirmed by the COSY data. The HMBC correlations between CH₂(1)/C(1'), H_a–C(1)/C(2'), and H–C(6')/C(1) confirmed the connectivity between C(1') to

Helvetica Chimica Acta - Vol. 86 (2003)

	∂(H)	$\delta(C)$	HMBC (¹ H)
$H_{\alpha}-C(1)$	2.66 (dd, J = 16.8, 6.4)	23.7	
$H_{\beta}-C(1)$	2.83 (dd, J = 16.8, 4.8)		
H-C(2)	5.29 (<i>m</i>)	68.3	2.83 (H_{β} -C(1)), 5.17 (H-C(3))
H-C(3)	5.17 (d, J = 6.0)	78.0	2.83 (H_{β} -C(1))
C(1')		110.2	2.66 $(H_a - C(1))$, 2.83 $(H_b - C(1))$,
			6.66 (H-C(6'))
C(2')		154.5	2.83 $(H_{\beta} - C(1))$
C(3')		149.4	6.58 (H-C(4'))
H-C(4')	6.58 (d, J = 2.0)	108.6	
C(5')		149.8	6.58 (H-C(4')), 6.66 (H-C(6'))
H-C(6')	6.66 (d, J = 2.0)	107.6	
C(1'')		134.9	5.17 (H-C(3))
H - C(2'')	7.35 $(d, J = 8.6)$	127.4	5.17 (H-C(3)), 7.09 (H-C(3"))
H - C(3'')	7.09(d, J = 8.6)	121.8	
C(4")		150.6	7.35 (H-C(2")), 7.09 (H-C(3"))
			7.09 (H-C(5'')), 7.35 (H-C(6''))
H - C(5'')	7.09 $(d, J = 8.6)$	121.8	
H-C(6")	7.35 $(d, J = 8.6)$	127.4	5.17 (H-C(3)), 7.09 (H-C(5"))

Table 2. 1D- and 2D-NMR Data (δ in ppm, J in Hz) of **3** in CDCl₃. Arbitrary numbering (see Fig. 1)^a).

C(1). The HMBC correlation between H-C(3)/C(1''), C(2''), and C(6'') established the connectivity between C(3) to C(1'').

The NOESY experiment with **3** showed cross-peaks as shown in the *Figure*. The relative configurations at C(2) and C(3) were based on NOESY correlations of H_{β} -C(1)/H-C(2) and H-C(2)/H-C(3), while H-C(2) and H-C(3) adopted the β -configuration. Further experiments are required to elucidate the absolute configuration of **3**. From the above results, artocarpol J (**2**) was characterized as 6-{[3-(4-acetoxyphenyl)oxiran-2-yl]methyl}benzene-1,2,4-triyl triacetate (**2**).

The anti-inflammatory activities of artocarpol I (1) and artocarpol J peracetate (3)were studied in vitro by measuring the inhibitory effect on the chemical-mediator release from mast cells, neutrophils, macrophages, and microglial cells. Compounds 1 and 3 did not cause a significant inhibition of mast cell and neutrophil degranulation stimulated with compound 48/80 (10 µg/ml) and fMLP (1 µm)/CB (5 µg/ml) (data not shown) [8–10]. Both fMLP (0.3 μ M)/CB (5 μ g/ml) and PMA (3 nM) stimulate the superoxide anion formation from rat neutrophils. These two stimulants activate the same oxidase, but utilize different transduction mechanisms and are regulated differently in neutrophils [11]. As shown in Table 3, compounds 1 and 3 inhibited in a concentration-dependent manner the superoxide anion formation in fMLP/CB- and PMA-stimulated rat neutrophils ($IC_{50} = 17.1 \pm 0.40$ and $20.5 \pm 2.60 \mu$ M, resp., for the fMLP/CB-induced response) except for **3** induced the superoxide anion formation in PMA-stimulated rat neutrophils. In the determination of nitrogen monoxide (NO) and tumor-necrosis factor- α (TNF- α) formation, the macrophage-like cell line RAW264.7 and the microglia-like cell line N9 were stimulated with lipopolysaccharide (LPS) $(1 \,\mu\text{g/ml})$ and LPS $(10 \,\text{ng/ml})/\text{IFN-}\gamma$ (interferon- γ) $(10 \,\text{units/ml})$, respectively [12-14]. Compound 1 had no significant effect on NO and TNF- α production from both cell

lines (data not shown). Compound **3** (10 μ M) showed slight inhibitory effect on NO production from N9 cells induced by LPS/IFN- γ with a % inhibition of 20.2 \pm 0.50, while it had no significant effect on NO production from RAW 264.7 cells and TNF- α production from both cell lines (data not shown). These results indicate that **1** and **3** may attenuate the respiratory burst in neutrophils, and **3** may also suppress the NO production from microglial cells.

Table 3. Inhibitory Effect of **1** and **3** on Superoxide-Anion Formation from Rat Neutrophils Stimulated with $fMLP (0.3 \ \mu\text{m})/CB (5 \ \mu\text{g/ml}) and PMA (3 \ n\text{m})^{a})$

Compound ([µм])	Superoxide formation [mmol/106 cells/30 min]		
	fMLP/CB	PMA	
Control	2.49 ± 0.24	2.75 ± 0.10	
1 (3)	2.52 ± 0.33	n.d. ^b)	
(10)	2.06 ± 0.30	$1.63 \pm 0.13^{\circ}$)	
(30)	$0.74 \pm 0.10^{\rm d}$)	$1.32 \pm 0.19^{\circ}$)	
IC_{50}	17.1 ± 0.40 µм		
3 (3)	$1.90 \pm 0.21^{\circ}$)	n.d. ^b)	
(10)	1.50 ± 0.14^{d})	3.20 ± 0.21	
(30)	1.09 ± 0.10^{d})	3.23 ± 0.15	
IC_{50}	20.5 ± 2.60 µм		
Triphcoperazine (1)	n.d. ^b)	1.98 ± 0.13	
(3)	2.41 ± 0.27	$1.21 \pm 0.27^{\rm d}$)	
(5)	$1.85 \pm 0.09^{\circ}$)	n.d. ^b)	
(10)	0.47 ± 0.22^{d})	$0.45 \pm 0.16^{\rm d})$	
IC_{50}	$6.60\pm0.20~\mu$ м	$2.70\pm0.60~\mu\mathrm{M}$	

^a) Values are expressed as the means \pm s.e.m. (n=3). ^b) n.d.: Not determined. ^c) P < 0.05 compared with the corresponding control values. ^d) P < 0.01.

Biogenetically, seven novel phenolic compounds containing an oxepin ring, artocarpols A (5), C (6), D (9), E (4), F (7), G (8), and I (1) (*Scheme*) seem to be derived from appropriate stilbenes. As shown in the *Scheme*, the cleavage of the pyran ring of 9 yields 10. Compound 10 is prenylated at C(20) to yield 4, and it undergoes cyclization between C(9)-OH and C(18), and is oxidized at C(17) to give 1, and after cyclization and oxidation (between C(9)-OH and C(18), and C(22) and C(23), respectively, to give 8. The cyclization and oxidation reactions between C(17)-OH and C(22), and C(21) and C(23) of 1, respectively, give 7. The cyclization reactions between C(9)-OH and C(18), C(17) and C(22), and C(16) and C(23) of 4 give 5. The rearrangement between C(9) and C(16), and cyclization between C(9)-OH and C(18), C(21) and C(13), C(12) and C(4), C(22) and C(16), and C(23) and C(10) of 4, lead to 7.

This work was partially supported by a grant from the *National Science Council of Republic of China* (NSC89-2320-B037-077).

Scheme. Hypothetical Biogenetic Route to Artocarpols A (5), C (6), D (9), E (4), F (7), G (8), and I (1) from Stilbenes

Experimental Part

General. M.p.: uncorrected. UV Spectra: Jasco UV-VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Hitachi 260-30* spectrometer; ν in cm⁻¹. ¹H- and ¹³C-NMR Spectra: at 400 and 100 MHz, resp.; Varian Unity-400 spectrometer. MS: JMS HX-100 mass spectrometer; m/z (rel. %).

Plant Material. Root barks (790 g) of *A. rigida* were collected at Ping-Tung Hsien, Taiwan, in July 1998. A voucher specimen is deposited in the laboratory of medicinal chemistry.

Extraction and Isolation. The root barks (790 g) were chipped and extracted with CHCl₃ at r. t. The extract (57 g) was eluted through column chromatography (CC; silica gel) to give **1** (10 mg) with hexane/AcOEt 4:1. Compound **2**, unstable in org. solvents at r.t., was acetylated with excess Ac₂O in anh. pyridine for 8 h. The acetylated product was worked up as usual. The residue was purified by CC (silica gel; cyclohexane/AcOEt 7:1) to give **3** (21 mg).

Artocarpol I (= 3,4-Dihydro-2-methyl-6-(3-methylbut-2-enyl)-2-(4-methylpent-3-enyl)-2H-dibenzo[b,f]pyrano[2,3-d]oxepine-3a,7,11-triol; **1**). Colorless powder. $[a]_{\rm D}^{26} = +2$ (c = 0.1, CHCl₃). UV (MeOH): 295 (4.36). IR (film): 3417, 1625, 1600. ¹H-NMR (CDCl₃, 400 MHz; for numbering, see the *Figure*): see *Table 1*. ¹³C-NMR : see *Table 1*. FAB-MS: 463 (3, $[M+1]^+$), 462 (6) 307 (11), 154 (100), 136 (87), 69 (40). HR-FAB-MS: 463.2485 ($C_{29}H_{34}O_5^+$; calc. 463.2484).

Artocarpol J Tetraacetate (=6-[[3-(4-Acetoxyphenyl)oxiran-2-yl]methyl]benzene-1,2,4-triyl Triacetate; **3**). Colorless oil. $[a]_{D}^{27} = +46$ (c = 1.0, CHCl₃). UV (MeOH) 275 (3.73), 210 (4.53). IR (film): 1766, 1622, 1600. ¹H-NMR (CDCl₃, 400 MHz; for numbering, see *Figure*): see *Table 2*. ¹³C-NMR: see *Table 2*. FAB-MS: 443 (3, $[M+1]^+$), 442 (3), 382 (31), 340 (47), 323 (100), 136 (56), 107 (77). HR-FAB-MS: 443.1342 (C₂₃H₂₂O₉⁺; calc. 443.1341).

Inhibitory assays for chemical mediator induced by various stimulants in mast cells, neutrophils, RAW 364.7 cells, and N9 cells were performed by the methods described in [15].

REFERENCES

- [1] M. I. Chung, H. H. Ko, M. H.Yen, C. N. Lin, S. Z.Yang, L. T. Tsao, J. P. Wang, *Helv. Chim. Acta* 2000, 83, 1200.
- [2] H. H. Ko, C. N. Lin, S. Z. Yang, Helv. Chim. Acta 2000, 83, 3000.
- [3] H. H. Ko, S. Z. Yang, C. N. Lin, Tetrahedron Lett. 2001, 42, 5269.
- [4] Y. H. Lu, C. N. Lin, H. H. Ko, S. Z. Yang, L. T. Tsao, J. P. Wang, Helv. Chim. Acta 2002, 85, 1626.
- [5] Y. Hano, R. Inami, T. Nomura, *Heterocycles* 1990, 31, 2173.
- [6] Y. Hano, R. Inami, T. Nomura, Heterocycles 1993, 35, 1341.
- [7] K. S. Saini, S. Ghosal, *Phytochemistry* **1984**, 23, 2415.
- [8] J. P. Wang, S. L. Raung, C. N. Lin, C. M. Teng, Eur. J. Pharmacol. 1994, 251, 35.
- [9] [9] A. Boyum, J. Clin. Invest. 1968, 97 (suppl.), 77.
- [10] R. J. Smith, S. S. Idon, Biochem. Biophys. Res. Commun. 1979, 91, 263.
- [11] F. Morel, J. Doussiere, P. V. Vignais, Eur. J. Biochem. 1991, 210, 523.
- [12] A. H. Ding, C. F. Nathan, D. I. Stuehr, J. Immunol. 1998, 141, 2407.
- [13] L. Meda, M. A. Cassatella, G. I. Szendrei, L. J. Otvos, P. Baron, M. Villalba, D. Ferrari, F. Ross, Nature (London) 1995, 374, 647.
- [14] B. Beuther, A. Cerami, Am. Rev. Biochem. 1998, 57, 505.
- [15] H. H. Ko, L. T. Tsao, K. L. Yu, C. T. Liu, J. P. Wang, C. N. Lin, Bioorg. Med. Chem. 2003, 11, 105.

Received February 28, 2003